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Part "a"

FIGURE I
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CHAPTER 8 --ROTATIONAL   MOTION   I

8.1)  Do not spend a lot of time on this problem.

a.)  The integral ∫r2dm
essentially tells you to identify all
the mass (dm) a distance r units
from the axis of interest (in this
case r = y), multiply that dm by r2,
then sum up all possible r2dm
quantities using an integral.

In this case, we can define a
differential strip of thickness dy
and mass dm a distance y units
from the x axis (i.e., the axis of
rotation).  Noting that the width of
the strip at any particular y is 2x
(see Figure), that the Pythagorean relationship yields x = (R2 - y2)1/2, and
that the surface area density function is σ  = ky, we can write:

    dm = σdA
= (ky)[(2x)dy]
= (ky)[2(R2 - y2)1/2dy].

Using this expression for dm in our moment of inertia expression, we get:
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FIGURE II
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FIGURE IIIa

Note:  How did we solve this integral?  There is certainly a nifty way to do it
using the approaches taught in your Calculus class, but not remembering the
technique off hand, I simply looked it up in a book of integrals.

Bottom line:  If you get a problem like this on a test, setting up the integral
will be worth 95% of the problem.

b.)  This geometry is more difficult than that in the previous problem
because the given density is a function of y while the
symmetry is radial.  That is, if the body was homogenous we
could define a differential half-hoop of radius r and thickness
dr (note that the mass in the hoop is all the same distance
from the z axis), determine the amount of mass dm in that
section (see Figure II), and multiply that
mass by the square of the distance r
from the z-axis.

Unfortunately, the mass distribution
is not a function of r, it is a function of y.

To circumvent this problem, we
must take an arbitrary slice of the hemi-
sphere, section the slice into pieces, pick
one piece whose height is defined as dr
and whose width is r  dθ  (see Figure
IIIa), determine the amount of mass in
the section, sum over all of the possible

FIGURE IIIb

0
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y = r sin 0

sections in the slice, then sum over all of the slices.
Noting that y = r sin θ  (see Figure IIIb) and

using the expression for dm shown in the sketch, we
can use our moment of inertia expression to write:
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This is a double integral.  Fortunately, the radial variable r is not
dependent upon the angular variable θ , so the integral can be re-written as
shown below (in doing so, the evaluation becomes nowhere near as difficult
as one might expect at first glance).

The integral, after variable separation, is:

  
I = k r4dr sin θdθ∫∫ .
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Doing the integral yields:
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The moral of the story?  If you understand what the moment of inertia
expression is asking you to do, using it in a problem like this isn't that hard.
Setting up the integral may take a little thinking, but its underlying tenets are
fairly transparent.  Find all the mass a distance r from the axis of interest, call
that mass dm, then multiply dm by that distance r squared.

8.2)  This problem has been included to give you a look at the basic
kinematic and rotation/translational relationships.  Don't spend a lot of time on it;
it's more to get you familiar with the ideas than anything else.

a.)  Using dimensional analysis, going from km/hr to m/s requires con-
verting kilometers to meters and hours to seconds.  The best way to do this
is by simply placing the units first, then by plugging in the numbers.  That
is, the relationship has the units of hours in the denominator.  That means
you want to multiply by a quantity that has hours in the numerator and the
desired seconds in the denominator, or hours/second.  In that way the hour
terms cancel out and we are left with seconds in the denominator.  Similar
reasoning follows the kilometer variable in the numerator.  Doing the
calculation yields:

     (km/hr)(hr/sec)(m/km).

Putting in the numbers, we get:

     (54 km/hr)[(1 hr)/(3600 sec)][(1000 m)/(1 km)] = 15 m/s.
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b.)  The relationship between the velocity of the center of mass of a
rolling object (i.e., one that both translates and rotates) is:

     vcm = Rω .

Minor side point:  The temptation is to assume that the R term is
simply the radius of the round object.  Although the value for R is equal to
the radius of the object in this case, R in this expression is really telling us
how many meters there are on the arc of a one radian angle (remember, we
are relating a linear measure vcm to an angular measure ω ).  Using the
relationship vcm = Rω , rearranging, then plugging in the numbers, we get:

 ω  = vcm/R
    = (15 m/s)/(.3 m/rad)
    = 50 rad/sec.

Note:  Because we have been careful with our units, we get the correct
units for the angular velocity.

As for 4 m/s corresponding to 13.33 rad/sec, we can use vcm = Rω  to write:

 4 m/s = (.3 m) ω
⇒  ω  = 13.33 rad/sec.

c.)  If the angular displacement had been one rotation--2 radians--the
distance traveled by a point on the wheel's edge would have been the
arclength of an angular displacement ∆θ  equal to 2 radians, or ∆ s = 2R
meters (remember, the relationship between arclength ∆ s, radius-to-the-
point-in-question r, and angular displacement ∆θ  is ∆ s = r ∆θ ).  If the
angular displacement had been two rotations--4 radians--the distance
traveled would have been 4R meters

If we lay the arclength ∆ s out flat, we will get the total linear distance
the wheel traveled.  We know that distance.  If we additionally know the
radius of the wheel, we can write:

 ∆ s = R ∆θ
      ⇒      ∆θ  = ∆ s/R

           = (50 m)/(.3 m/rad)
= 166.7 radians.
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d.)  Angular acceleration:

(ω2)2 = (ω1)2 + 2α(θ2 -θ1)

        (13.33 rad/s)2 = (50 rad/s)2 + 2a(166.7 rad)
 ⇒     α = -6.97 rad/s2.

e.)  We know the relationship between angular acceleration of a body
and the magnitude of the translational acceleration of a point a distance r
units from the axis of rotation.  Using it we get:

a = r α
   = (.3 rad/m)(-6.97 rad/s2)
   = -2.09 m/s2.

f.)  For elapsed time using (θ 2 - θ 1) = ∆θ , we get:

   ∆θ  = ω1  ∆t  + (1/2) α(  ∆t)2

(166.7 rad) = (50 rad/s)t + .5(-6.97 rad/s2)t2.

Using the quadratic formula, we get:

t = 5.27 seconds.

g.)  For elapsed time using ω 2 and not ∆θ :

α = (ω2 - ω1)/  ∆t

⇒        ∆t  = [(13.33 rad/s - 50 rad/s)]/(-6.97 rad/s2)
    =  5.26 sec               (yes, Parts f and g match).

h.)  For the average angular velocity:

ωavg = (ω2+ω1) / 2
        = [(13.33 rad/s) + (50 rad/s)]/2
        = 31.67 rad/s.
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i.)  Determine angular displacement ∆θ :

∆θ  = ω1  ∆t  + (1/2) α(  ∆t)2

     = (50 rad/s)(.5 s) + .5(-6.97 rad/s2)(.5 s)2

     = 24.13 rad.

j.)  How far translates as, "What was the arclength of the wheel's
motion?"

∆ s = R ∆θ
      = (.3 m/rad)(24.13 rad)
      = 7.24 m.

k.)  Angular velocity calculated without using time variable:

 (ω3)2 = (ω1)2 + 2α ∆θ

= (50 rad/s)2 + 2(-6.97 rad/s2)(24.13 rad)
= 46.51 rad/s.

l.)  Angular displacement ∆θ :

     ∆θ  = ω3  ∆t  + (1/2) α(  ∆t)2

= (46.51 rad/s)[(.7 s) - (.5 s)] + .5(-6.97 rad/s2)(.2 s)2

= 9.16 rad.

m.)  From the information given in Part b, we know that the angular
velocity of our wheel when moving at 4 m/s is 13.33 rad/sec.  We can solve
for   ∆s = R ∆θ  if we know ∆θ  during the motion (R is the radius of the
wheel, or .3 m).  We can use ∆θ  = ω 1  ∆t + (1/2) α (  ∆t)2 if we know α .  We
start:

       α = (ω4 - ω2) /   ∆t
= [(20 rad/s) - (13.33 rad/s)]/(3 s)
= 2.22 rad/s2.

     ∆θ  = ω2  ∆t  + (1/2) α(  ∆t)2

= (13.33 rad/s)(3 s) + .5(2.22 rad/s2)(3 s)2

= 49.98 radians.

     ∆ s = R ∆θ
            = (.3 m/rad)(49.98 rad)
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rp

0

re

           = 14.99 meters.
     

8.3)  We are given the earth's mass at me = 5.98x1024 kg, the earth's period

T = 24 hours (8.64x104 seconds--use dimensional analysis to get this if you don't
believe me), and its radius at re = 6.37x106 meters.

a.)  The earth rotates through 2 radians in 24 hours (8.64x104

seconds).  Its angular displacement per unit time (i.e.,
its angular velocity) is, therefore:

ω  = ∆θ /  ∆t
    = (2 rad)/(8.64x104 s)
    = 7.27x10-5 rad/s.

b.)  The earth's equatorial velocity (magnitude) is
equal to the linear distance a point on the equator travels per unit time.
That is:

veq = (2 rad)(6.37x106 m/rad)/(8.64x104 s)
       = 463.2 m/s       (this is about 1000 mph).

Note:  According to theory, vequ should equal Rω e.  Putting the numbers in
yields:

   R ωe = (6.37x106 m)(7.27x10-5 rad/s)
 = 463.1m/s.

Given round-off error, this is close enough for government work.

c.) Looking at the sketch above, the radius of the circle upon which that
particle will be traveling will be:

rp = recos 60o

     = (6.37x106 m) (.5).

It takes the same amount of time T for the particle at 60o to travel
through one rotation as it does for a particle on the equator, so:
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vp = 2rp/T

      = (2)(3.185x106 m)/(8.64x104 s)
      = 231.6 m/s.

Does this make sense?  Sure it does.  As you approach the geographic
north pole the travel velocity should go to zero.

d.)  Using the table at the end of Chapter 8 in your text, the moment of
inertia of a solid sphere Iss is:

Iss = (2/5)MR2

      = .4(5.98x1024 kg)(6.37x106 m))2

      = 9.7x1037 kg.m2.

Bottom line:  It's going to take a mighty stiff cosmic breeze to change the
earth's rotational motion!


